Kinetic Reaction Mechanism of Sinapic Acid Scavenging NO2 and OH Radicals: A Theoretical Study

نویسندگان

  • Yang Lu
  • AiHua Wang
  • Peng Shi
  • Hui Zhang
  • ZeSheng Li
چکیده

The mechanism and kinetics underlying reactions between the naturally-occurring antioxidant sinapic acid (SA) and the very damaging ·NO2 and ·OH were investigated through the density functional theory (DFT). Two most possible reaction mechanisms were studied: hydrogen atom transfer (HAT) and radical adduct formation (RAF). Different reaction channels of neutral and anionic sinapic acid (SA-) scavenging radicals in both atmosphere and water medium were traced independently, and the thermodynamic and kinetic parameters were calculated. We find the most active site of SA/SA- scavenging ·NO2 and ·OH is the -OH group in benzene ring by HAT mechanism, while the RAF mechanism for SA/SA- scavenging ·NO2 seems thermodynamically unfavorable. In water phase, at 298 K, the total rate constants of SA eliminating ·NO2 and ·OH are 1.30×108 and 9.20×109 M-1 S-1 respectively, indicating that sinapic acid is an efficient scavenger for both ·NO2 and ·OH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of the Self-Reaction of HCO Radicals: Theoretical Kinetics Studies

The mechanism of the self-reaction of HCO radicals is investigated by using high-level quantum-chemical methods including M05-2X, CCSD, CCSD(T) and CRCC(2,3). Next, the rate coefficients for several product channels as a function of pressure and temperature are computed by employing statistical rate theories. Four important product channels are predicted to be CO + CO + H2, HCOH + OH, cis-(HCO)...

متن کامل

A Theoretical Study on the Antioxidant Activity of Piceatannol and Isorhapontigenin Scavenging Nitric Oxide and Nitrogen Dioxide Radicals

The antioxidant activity of naturally occurring stilbene compounds piceatannol (PIC) and isorhapontigenin (ISO) scavenging two free radicals (NO and NO2) were studied using density functional theory (DFT) method. Four reaction mechanisms have been considered: hydrogen atom transfer (HAT), radical adduct formation (RAF), single electron transfer (SET), and sequential proton loss electron transfe...

متن کامل

A Kinetic Approach in the Evaluation of Radical-Scavenging Efficiency of Sinapic Acid and Its Derivatives.

A kinetic approach was used to determine the radical scavenging activities of sinapic acid and its derivatives: sinapine, 4-vinylsyringol, syringic acid, syringaldehyde, and ethyl, propyl and butyl sinapate. The responses were expressed as rates of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) scavenging (RS), superoxide radical (O₂˙-) scavenging (RFF), and β-carotene bleaching in the emulsion ...

متن کامل

Experimental and Theoretical Study of Stable Phosphorus Ylides Derived from 5-Nitroindazole in the Presence of Different Acetyelenic Esters: Furthure Insight into the Reaction Mechanism

The kinetics of the reactions between triphenylphosphine 1 and dialkyl acetylenedicarboxylates 2, in the presence of a NH-acid such as 5-nitroindazole 3,were studied. Corresponding kinetic parameters to all reactions were evaluated, with the second order rate constant (k) values calculated. Effects of solvent, temperature, and reactant...

متن کامل

Studies on the antioxidant and free radical-scavenging effect of sinapic acid: An in vivo and in vitro model

The aim of the present study was to evaluate the circulating antioxidants such as vitamin C, vitamin E and GSH in arsenic induced toxicity in rats and in vitro free radical scavenging assay. In this investigation, arsenic (5 mg/kg body weight (b.w) was administered orally for 30 days to induce toxicity. Sinapic acid was administered orally (40 mg/kg body weight) for 30 days with oral administra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016